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NEVILLE’S AND ROMBERG’S PROCESSES: A FRESH APPRAISAL
WITH EXTENSIONS

By J. C. P. MiLLER
University Mathematical Laboratory, Cambridge

(Communicated by M. V. Wilkes, F.R.S.—Received 9 October 1967)
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gg In this paper Neville’s process for the repetitive linear combination of numerical estimates is

E = re-examined and exhibited as a process for term-by-term elimination of error, expressed as a power

series; this point of view immediately suggests a wide range of applications—other than interpola-
tion, for which the process was originally developed, and which is barely mentioned in this
paper—for example, to the evaluation of finite or infinite integrals in one or more variables, to the
evaluation of sums, etc. A matrix formulation is also developed, suggesting further extensions, for
example, to the evaluation of limits, derivatives, sums of series with alternating signs, and so on.

It is seen also that Neville’s process may be readily applied in Romberg Integration; each
suggests extensions of the other.

Several numerical examples exhibit various applications, and are accompanied by comments
on the behaviour of truncation and rounding errors as exhibited in each Neville tableau, to show
how these provide evidence of progress in the improvement of the approximation, and internal
numerical evidence of the nature of the truncation error.

A fuller and more connected account of the behaviour of truncation errors and rounding errors
is given in a later section, and suggestions are also made for choosing suitable specific original
estimates, i.e. for choosing suitable tabular arguments in the elimination variable, in order to
produce results as precise and accurate as possible.

1. INTRODUCTION

THE ROYAL A
SOCIETY

The idea of interpolation by repetitive* linear interpolation of estimates seems to have
originated with A. G. Aitken (1932, 1938), with effective further development by Neville
(1934). The resulting processes are highly suitable for automatic computation, but have
been rather slow in gaining ground, partly because of the relative obscurity of the journals
in which these early papers appeared, and partly because they seem, at first sight, to be
restricted to interpolation, now a relatively less widespread requirement than in the past.
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* The inappropriate adjective ‘iterative’ is commonly used; it is, however, more useful to reserve
‘iterative’ for self-correcting repetitive processes—Neville’s process is not one of these.
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526 J. G. P. MILLER

In this paper Neville’s process is re-examined and exhibited mainly as a process for the
successive elimination of terms in an error expressed as a power series; this immediately
suggests a wide range of applications to the evaluation of integrals, sums, etc. A matrix
formulation 1s also developed, suggesting further extensions, for example, to the evaluation
of limits, derivatives, and sums of series with alternating signs.

Applications to interpolation are barely mentioned in this paper; the accounts of
Aitken and Neville should be consulted for details and numerical examples of such applica-
tions, and for Aitken’s extension to quadratic extrapolation and for Neville’s extension
allowing use of derivatives. It may, however, be useful to mention that the methods of §11,
involving the determination and use of Lagrangian multipliers, extend readily to
incorporate these developments, and also the osculatory interpolation formulae of
Hermite (1878) and Fort (1948).

It is also seen that Neville’s process may be applied to Romberg integration, and that
each suggests extensions of the other. In particular, it is shown that error terms may be
eliminated from estimates for integrals with singularities of the integrand at the end-points
of the range, after determining the form of these terms as in Fox (1967).

A number of applications on the lines of the more direct parts of this paper can be
found in recent literature. For example, occasional applications that may be regarded as
cases of the ‘deferred approach to the limit’ of Richardson & Gaunt (1927) arc fore-
shadowed in Henrici (1964), or Gragg (1965), to give but two examples. However, this paper
is designed largely as an expository account of a number of extensions of Neville’s and
Romberg’s processes, mainly new, and no attempt has been made to search the literature
exhaustively.

Several numerical examples are included, exhibiting a variety of applications. In order
to separate the effects of convergence (or the successive elimination of terms in the
truncation error series) and of rounding errors (which accumulate and grow, in general),
it has seemed desirable to retain a substantial number of figures in the calculations. This
is not, of course, always necessary or even possible in practice, but serves to avoid confusion
due to overlap of effects. Comments are added in nearly every case on truncation and
rounding-error effects exhibited in the various Neville tableaux.

A more connected discussion of error effects is given later, in §12, making some use of
Lagrange type multipliers, developed in §11, and useful also in obtaining isolated results
in the Neville tableau. It is shown how such discussion of error may help in estimating the
precision of results obtained, by study of a tableau alone, and may also help, more
generally, in the choice of suitable arguments for the individual estimates for satisfactory
reduction by Neville’s process (§13).

2. DESCRIPTION OF THE PROCGESS
2-1. The basic step
Neville’s process for interpolation is a repetitive procedure of a type very convenient for
inclusion in programs for automatic computers. A brief description of this process follows.
'The basic step is implied in the inductive definition

A(x—2) [ (%5 Xy X1 ooy Hyoy) <+ A (%, —x)

f(x, Foo &1 e2es xn) B A(x—xn) f(xa Kps Koy wees ‘xn) (21)
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NEVILLE’S AND ROMBERG’S PROCESSES 527

with f(x; x,) = f(x,), where f(x) is a function of x tabulated at the points x = x,,
(r=0,1,2,...,n). This is known as a linear cross-mean; the quantities in the first column
of the matrix are known as parts, the divisor is the difference between the parts. The
scaling factor A should be chosen to suit convenience; it is here assumed that A = 1 in
theoretical discussion. ‘

Clearly f(x; x4, %, ..., ¥,) is a polynomial in x of degree not greater than zn. Also
Sxg; %oy %yy oeny &,) = f(x,) for s = 0(1)n. These facts follow by induction from
f(x; x,) = f(x,), a constant, r = 0(1)n.

Thus f(x; %y, %, ..., %,) is the unique polynomial of degree not exceeding » through the
n+1 points (x,, f(x,)), r = 0(1)n; that is, it is identical in all but form with the Lagrange
polynomial, or with Newton’s divided-difference polynomial, through these points. We
may therefore quote the most usual form of error term in representing f(x) by this
polynomial P,(x), namely

S(x) = B,(x) +R,(x),

R = (55 (o). Tl 29

with 7 a point in the least closed interval including x, x,, &, ..., x,, provided that f(x) is
suitably well behaved in this interval. We note also a consequence of the uniqueness of
P (x); it means that the order in which x, 1y, ..., ¥, are used in the development by linear
cross-means is immaterial, i.e. that

7

f(xa Koy X5 oees xn) =f(x; JC:), xlla AAR] xn)
in which {xj, x{, ..., 4} is any re-arrangement of the set {xy, x, ..., %,}.

It is sometimes useful to distinguish between two ways of using the process. One way is
as a process for developing interpolating polynomials P,(x) as functions approximating a
given function f(x). The other way is to view it as a procedure for obtaining numerical
approximations to a particular value f(X), for a specified ¥ = X. We use this convention
of distinction by the argument x or X below, particularly as it is helpful to transfer the
origin by writing ¥ = X+ and considering interpolation to §{ = 0.

There are two ways of developing the numerical interpolation that are most commonly
used: Aitken’s process and Neville’s process.

2-2. Aitken’s process

This method of using the basic step in computing f(X) is illustrated in table 2:2. The
quantities computed and the layout of results for desk computations are shown. In each
column a pivotal element is chosen, and combined with each of the other elements in that
column in turn. The elements of the 2 X 2 matrix of the basic step, see (2-1), are in each
case at the corners of a rectangle.

TABLE 2:2
x parts S(x)
%o X—x, J(#0)
%1 X —x S(x) S (X5 %0, %)
Xg X—xy JSxs) JUX5 g, x,) JX5 x4, %y, %9)
X3 X —xg Sx3) JX5 %95 23) J(X;5 x5 2, %3)
xy X—ixy NACH) S(X;5 %, %) J(X5 295 21, 2,)

65-2
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528 J. C. P. MILLER

New values f(#,) may be appended as needed, if convergence to the desired interpolate
is insufficient, but only at the bottom of the table; order is immaterial, so that x,, x,, %y, ...
may be chosen in numerical order, or in order of distance from X, or in any other order.

2-3. Newville’s process

In this method, only consecutive elements in any column are combined as in table 2-3.
Results are recorded on a level mid-way between lines in the previous column, and
the parts in the first column of the 2 X 2 matrix of the basic step (2-1) are found at the end
of lines sloping diagonally backwards from the two elements used in the second column,
up for the upper element, and down for the lower element. New values may be added at
either end of the table, thus making it easier to preserve numerical order of arguments
and regular progression of results, and yet append new arguments on both sides of x. This
regular progression helps with checking.

TABLE 2-3
x parts Sf(x)
%o X —x, J %) .
R Xow T JRIRE e
x5 X7, () S = X 0 %, 5,
%y X—xy S(xy) e

2:4.

Aitken’s process has a very effective extension involving quadratic parts, which is less
easily applied with Neville’s process. On the other hand, Neville’s process may be easily
adapted to use derivatives; these are much more difficult to use with Aitken’s process,
though it is of interest to note that Aitken (1932, p. 75) did suggest the use of one such
derivative with a quadratic process. We are not concerned further with these particular
possibilities in this paper.

In the rest of this paper we shall be concerned almost entirely with ‘extrapolation
to zero’, in particular, with tables having parts of one sign only. In fact, the signs have
no particular effect on the calculation, but it is worthwhile to remark that any use of
Aitken’s or Neville’s process can be regarded as ‘extrapolation or interpolation to zero’, if
the column of parts is regarded as the primary variable; the examples that follow, however,
usually have a variable which vanishes naturally at the argument for which we desire to
know the function value—this should not be allowed to obscure the fact that the processes
are equally valid in the more general case.

3. NEVILLE’S PROCESS AS AN ELIMINATION PROCESS

New light is thrown on Neville’s process, and extensions of its range of applications
become clear, if we express it as a form of elimination.

3-1.
Suppose, as before, that f(x) is known at ¥ = «,, 7 = 0(1)n, and that f(X) is required.
If we expand as a Taylor series at x = X, we obtain, writing §{ = x—X,

NAC) =f(X)*F(x“X)f'(X)+(X—X)zf”(X)/2!+---+(x~X)Sf("(X)/S!+-'-} (311)
= f(X)+Ef (X)+E S (X) 21+ ..+ & fOX) s+ ...
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NEVILLE’S AND ROMBERG’S PROCESSES 529

Then  f(X;%) = flxg) — f+Eaf +ES[2LHES 3L A &SI+
FXs ) = fl0) = fHES +HES I HES B+ EfOs! .
where §, = x,— X and the arguments (X) are omitted.
The linear cross-mean is then

S (X w0, %) = fH0—E& f[2! =& (Eo+ED)S" 81— ... =& Ho (&, £1) SO st (3:13)

in which H, (£, ,) is the sum of the homogeneous products of degree p in the two variables

b &y L.
» e B &) = § G

We note that the term in f'(X) has been eliminated.

(3-12)

3:2.
If we now take the linear cross-mean of (3:13) and of
S (X 20, 25) = fH0—=8,E 12! =& 8(& +E) " [8! — ... =, 6 H
we obtain similarly
S 29, 215 %) = fH-0+0+EE 6 "3+ ... +8081 82 H_5(Eos §1s E) W st ... (8-22)
where H, (&), §;, §,) is the homogeneous product sum of degree p in the three variables

&> £15 £, We extend this notation similarly to any number of variables.
This time the term in f”(X) has been eliminated.

2(61,60) S s!—... (3-21)

3-3.
We have used above, for r = 2, 3, the relation

&o h@;(g()a Er ooos &rm1) X Ep61e- 6y = (E,—E)
E L ey ) xEbt | TEE

B 1 H(g,g,---; r—>
= £&,...E 1 HZ(g(:, g;, ...,é,)l

= ——gogl...grlfp_l(goa gla RS gr)’

The last line follows because

5—}‘@{%(&’ gl’ gzs ceey Sp— 1>—H (gOa gl: 52: ceny r—l)}
1

= go £ SZ (&—8&) H, (gla €2 -5 1) (3-32)

- ~—sg:() I{Sﬂ(goa gr) I—[P—S(gl’ gz’ B 7_1)
Hy (G E).

() (8:31)

3:4.
"This elimination process may clearly be continued to yield generally
S5 %, 2y, .0, &,)
— ) (1 By f D) (1 1) By EsEo 6+ o D) (14 2)!

e 8obie 6 Hi(Gos E1y oo EVFTV(X) /(s 1) 1LY (3441)
This gives a remainder series for the Lagrange polynomial through the n-+1 points

(%, f(%,)), r = 0(1)n. This may be compared with the equivalent and more usual
remainder term (2-2).
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3-5. An alternative development of the elimination

It is sometimes convenient to start with a Taylor expansion about an origin that is not
at x = X, where f(X) is the desired interpolate. We choose, without loss of generality, the
origin ¥ = 0 for this purpose. Then

Jx) = fot+afo+a¥o/2 ... HarfP !+

and FX) = fot- Xfo+ X2t - X P (3-51)
so that  f(x) = f(X)+ (x—X)fo+ (x*— X?) 8/2!’]’---*l“(xr—X’)f(()’)/r!+_“1 2

= f(X)-+Efo+-EH (% X)fe)2! 4+ EH, (%, X)fPIr!+ ... ]

with § = x—X and H, defined as in § 3-2.
We now take the linear cross-means of f(X; x,) = f(x,), f(X,%,) = f(x,), expressed in the
form (3-52). This yields

J(X; x5 21) = f(X)+0-8 & fo/2!— ... =&y H,_5(xg, 21, X)fPr!—... (3-53)
: & EoH, (% X)| . _ 1 Hy(xy, X)| .
since 2ol en —aaly i) ».—<xo~x1>} e
= —goéﬂp—l(xo: Xy, X).

The elimination proceeds as before, with the difference that the homogeneous products
have an extra argument X, and the derivatives f*(0) are at a fixed point independent
of X, giving the remainder series in a different form.

3+6.

As an elimination procedure, Neville’s process is immediately seen to be relevant (as
has been remarked by Henrici and others) to processes such as Richardson’s ‘deferred
approach to the limit’ or ‘A2-extrapolation’, or to the summation of series, by elimination
of an appropriate series of remainder terms. In each case there is a remainder term which
may usually be expressed as a continuous function, for example, of the interval in a
formula for quadrature using equally spaced intervals, or of 1/n, where 7 is the number of
terms in the partial sums of a series. In the following paragraphs we consider several
examples of such applications in turn, designed to bring out various points that may arise.

4. APPLICATIONS TO QUADRATURE AND SUMMATION

b
The first examples are concerned with the evaluation of an integral f S(x) dx. We use
a

throughout the frapezoidal rule—the simplest possible formula—after dividing the (finite)
range into intervals & = (b—a)/n. The Fuler-Maclaurin expansion indicates that the
trapezoidal sum has the form given by

b
T, = WEftfit oty +30) = [ S0 dvt A2 B KRR, (41)

where f, = f(x,), %, = a+rh, and R, is a remainder term of order 4?**? in general, but
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NEVILLE’S AND ROMBERG’S PROCESSES 531

which often includes another part decreasing, for example, like e=**, and usually quite
negligible in practice except when £ is relatively large (which, however, we like it to be),
see § 12 for further discussion. Thus we may use Neville’s process with elimination variable
h?%, and extrapolate for 4?2 = 0, with caution when a result for large 4 is used.

In § 4-5 we illustrate an application to summation, closely related to quadrature.

4-1. Quadrature (i)
Table 4-1 illustrates the applications of the process, by extrapolation to 42 = 0, i.e. as

n—>0o0, to 1 dx
I :j T = 47 = 078539 81634 0
oL+
using estimates

T, = b fytfitut o Hhaa 45 =1 f, =1 r282).

TABLE 4-1

A2 T,

1 0_75 0'785 .o 0'7853... 0'78539..

1 _ 0-78333 33333

i 8-3;?)76 92308 078538 46154 2?) igggg 859080 g;9g5

9 0-78539 75435 9 76397 5 googy

A 078279 41176 doses  39ss1zs  QTWT sapa0  SZEOT g1606
& 078373 15284 Sla0s 81978 o801 81638 51010 81635
A 078424 07666 e 81689 o S105% 81635

1
by 078498 14972 e 81644
2. 078510 88117

Comments on table 4-1

Not unexpectedly, the 10th decimal is not quite accurate when results have settled
down. For 10-decimal accuracy it is clear that one of the 10 and 12 interval formulae is
needed; probably & = 1, §, 1, 4, %, % would suffice. However, rounding-errors would
make it necessary to use further guard figures.

We may note also that here, as in many subsequent examples, it is advantageous to
rewrite the basic step (2-1) in terms of n (n = 1/k); this may lead to an improvement in
rounding-error effects when # is integral.

4-2.
"The process may be applied equally well to multi-dimensional integrals, provided that

the ratio of mesh-lengths in all dimensions is kept the same in all approximations, so that
the remainder may be a function of one variable only. Consider, for example,

1 pl
I= if f cosx cosy dxdy, with £ =2/n (n=1,23,..)
-1J -1

at interval the same in both variables. For comparison, the true value to 9 decimals is
I = 0-70807 3418. Extrapolation with 42 is appropriate if we use the trapezoidal rule in
both variables.

TABLE 4-2
13 1h% T,
1 % 0-59313 2798 32 7546
2 1 0-70668 3915 1210
£ 3 0-65621 6752 08 7231 3423
i 1 0-70773 6402 3362
: 6 0-67875 6599 0-70799 0278 07 4903
1 & 0-69499 7532
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4-3.
As a tour de force, with a double integral over a square domain, we integrate a harmonic

function, for which it is possible to use 4* as elimination variable (see Miller 1960). We

evaluate 12 g2
I = Zf f cosxcoshydxdy = 3-29789 48363 11236
—2J -2

with the same interval # = 4/n, n = 1(1)5, 10 in both variables and apply the trapezoidal
rule in each.

TABLE 4-3
R4t T,

L — 626250 3341229730 goone oo D 3:20789...

& +2-78042 30192 20745 72 24537 73570

¢ 3-29877 87787 46540 49469 44356

= +319638 75176 05642 89 42731 42908 48362 82156

! 3-29794 95547 43135 48364 59216 48363 11237
mhw 326581 4691430100 00 TR0 LSS 8948220 38319, L 48363 11234
=1 3. 5
siz  +328475 8988460077 O 0o ol 89 48361 95858

oo +3:29707 40156 13196

=

Comments on table 4-3

It is notable here that, crude though the original approximation with £ = 4 may be, it
makes a definite improvement in accuracy every time it is used, in that the first item in
any column is always an improvement on the second item in the previous column. This
improvement on using the crudest approximation obtained is very often present, though
not invariably so. In table 4-1, for instance, the first line does not show this improvement,
but indicates, in fact, the presence of an element in the error term R, that is difficult or
impossible to eliminate since it does not fit into the extended power series in /42, but
which is important for large % (only). This element is akin to similar elements involving,
e.g. e"M, that may be ignored when considering asymptotic series in powers of 1/x in
Poincaré’s sense. The top line in the table thus provides either an improvement, or
information about the type of error that can be present.

4-4.

We may also evaluate infinite integrals in (, 00) or (—00, c0) in a similar way. We need
the range of integration to depend on /; since approximations must involve finite sums or
integrals, we take limits 4-R/h instead of -f00, with a suitable constant R. A note of
caution is needed in these cases, for the error may not be wholly expressible as a series in
ascending powers in £; a singularity at £ = 0 can upset things, and this quite frequently
happens without obvious warning with infinite integrals and sums.

Consider "
j J‘ dx

and use the trapezoidal rule with 4 = 1/n, and with R = 2, i.e. use limits of integration
+92n = - 2n%h; all working in table 4-4 was with 7 or more decimals.

Comments on table 4-4
Convergence is not very rapid here. We shall see later that it can be improved when
we have demonstrated a feasible method (see §§ 8-1, 10-1) of using the fact that the error
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NEVILLE’S AND ROMBERG’S PROCESSES 533

series consists only of odd powers of A, while Neville’s process perforce eliminates all
integral powers of the variable used, starting from the first, a wasteful feature in the
present example. The main difficulty is, however, the presence of a fairly substantial part
of the error (for large £) that cannot be expressed as a power series in £, and so is not well
eliminated, if at all, by Neville’s process. A similar error was mentioned in § 4-3, and such
errors are discussed in § 12; here it renders the first line rather unhelpful, and prohibits the
easy use of intervals £ = 2 (one strip) and & = £ (3 strips), because this particular part of
the error in this example depends on the position of the origin within the strip containing
it; this is readily appreciated by considering trapezoidal approximations with x = 0 at
mid-strip or at the junction of two strips. For the infinite integral, as # — oo, the former
gives T, — 0, the latter 7}, —c0. We have used in table 4-4 only approximations with
x = 0 at a junction of intervals.

TABLE 4°4
n h T
1 1 22
2 3 2650507 S1010MA g 0072
2 3.132386 3142058
3 1 28133 13ES0 3aa3sel 51300 3aarer 0o
1
4 1 280243 TS 3aapaps 31T 3ad1sn4
6} 2075305 5131ao0 3141972
8 1 3016754

Withz = (1,2, 4, 5, 10, 20) the result 3-14158 84 is obtained and, withz = (1, 2, 3, 4, 6,
8, 12, 24) or n | 24 (n divides 24), we get 314159 272.

4-5. Summation of series (1)

Many infinite series are known, or may be shown or assumed, to have a remainder
term R,, where § = §,+R,, expressible as a power series in 1/z. It is clear that Neville’s
process may be applied to a set of values of S, to eliminate R, from §, = §—R,, as we have
done above with 7, = I—R, for an integral.

It is equally simple to obtain a finite sum §} for some (large) N by extrapolating the
variable 1/ to 1/N rather than to zero.

We illustrate summation with %(1/42) = in%=1-64493 40668.

TABLE 4-5
ln S,
L 16... 1-64... 1-6449... 1-64493 4...
15
1 1-25 25
3 1.58333 33333 351 85185
1 .
b eseliiny VOLLLLLILL RCRS amaessne GMERY an2er o
I 1.4013388sgy 110269444445 0 chagy 48011568 g0 0 385IST  n 0174
1 15274220520 L085521542L L0 0000 49239150 g 00,0 343107
K} : .
1 1-54976 77312 LO39LB0MT2 g o60gg 49314527

!
o

1-64102 11744

[

1-56497 66384

Comment on table 4+5
In this case enough figures have been retained to see that the effect of rounding-errors
is showing strongly in the last two or three figures, as a sudden slowing down of

convergence.

66 Vor. 263. A.
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4-6.
We consider next a double series
S
m, (m2 + nZ)%
summed over all integers m, 7, positive or negative, except m = n = 0, as indicated by
the prime. If we take finite sums over diamonds, i.e. if we write

1

2 ' 7 '"’“"“25:3. + Rr

S =S8 +R, =
7+7' (m2+n

m,n
0<|m|-+|n|<r

the main part of R, can be written as a power series in 1/r. The table below (computed on
the Cambridge Titan) shows that there is again an awkward part to this error term,
noticeable for small 7, but dying away very rapidly and not representable by the power
series.
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TABLE 4-6

i/r S,
14 9-03...
p o oouanssed TSISETEY geazrizest o
I 677790 34633 §-98859 49271 182 29567 ,
s : 874693 90961 283 62569 587 42793
1 727016 23715 L 901513 97249 519 90589 27571255
_ 885421 93475 441 14581 320 24331
L 7-58697 37667 9-02477 55915 377 28975 389 22751
; 8-91107 14289 404 65665 37198147
I 7-80765 67105 9-02874 88665 373 97209 356 73441
s 8-94469 35539 389 31437 361 81679 _
3 7-97009 05453 9-03067 79703 367 21913 362 99961
: §-96618 96579 579 49427 362 52647

I 809460 29345 9-03171 69611 364 87281 361 93989
s 8-98075 12807 373 64567 362 20649

I 81930638619 T 9.03232 28097 363 66085 362 12083

8-99106 55865 370 01483 362 16365
2 827286 40343 0 9-03269 84475 363 03703 362 69425
8-99863 51977 367 68889 0 362 40855

i 83388432300 CUINBOINT 0.03204305m9 00T PN 36279531

Jr 83943023029 FO0INIITES 0.03310 89289

& 844156 96809

Comments on table 4-6

The awkward rapidly decaying error (here alternating in sign) is evident in the first two
lines after three applications of the Neville step, and extends to four lines after the fifth
application. In the last column, rounding errors are affecting at least the four or more
final digits near the bottom of the column. A general examination of the results suggest
no better than § = 9:03362, which is correct to 5 decimals.

We could also sum over squares |m|, |2| < r, but this involves using more points—the
error term might however be better behaved, it has not been examined.

5. A MATRIX FORMULATION OF NEVILLE’S PROCESS
In order to extend Neville’s process further, it is convenient to express it first in matrix
terms.

5-1.
We start from the Taylor expansion (3-12) for f(x,), with remainder term starting in
SP(X). With ¢, = x,— X, and dropping (X) as before, it is

F(x,) = fHEf 4o FELOLsIp o L FED (1) 1+ RP 7y = 0(1)n  (511)
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which we may write as
1 & & ... &! J(X) R J (%)
1 g & ... &g J'(X) R S (xp)
1 g 2oL g FO(X)/3! /+ R® / = \ flx;) (512)
1§, & ... &t JSEDX)(k—=1)! RP Sx,)/
or A, terr® = f, (5-13)

in which A, , is a Van der Monde matrix.

Neville’s process is applied to the vector f,, to convert it step-by-step into the vector
of leading diagonal elements of table 2-3 or as exhibited in the tableaux of § 4. Inter-
mediate stages give vectors of elements along the diagonal for several columns, and then
down the rest of the column thus reached. By retaining in this way the top elements on
the diagonal at each stage, we conveniently retain a vector with n+1 elements throughout.

52,

The elimination process of § 3 outlines the effect of Neville’s process on the matrix
A, . = (A%, where u, = (1, 1, ..., 1)7 is the first column of A, ;, and A}, is the
remaining matrix of non-zero powers. In fact, Neville’s process is a simple repetitive process for
zeroizing sub-diagonal elements of the matrix A ;, and the steps for the first column of reduc-
tions are collectively obtained by premultiplying by the (z+1) X (n-+1) matrix

1 0 0 0
{ —& ) 0 0 \

L=t GG
- A
A B = A e

...................................................

1 0 0 0
0 1 0 0
—& &
N§z2) = 0 go "“ gz go _gz 0
—& 3
0 R A s 3

...................................................

and so on for subsequent columns.
The elements of these matrices are two-point Lagrange multipliers. We shall write, for
the (k+1)-point Lagrange multipliers, of degree £,

mX
L (%5 %75 %0, %15 205 %) = (Fjacg%@

66-2
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in which (%) = (x—xg) (x—x})...(¥—x}), the product of (x—x;) for all x; mentioned after
the second semicolon in L,, and #'(x) is its derivative. The x; are some set of £+ 1 chosen
from the x,. In the matrices below, in which x = X for every L,, we shall further abbreviate
by omitting X, and retaining only the suffices in the x, used. Thus L,(X; x;; x;, X9, ¥3)
becomes L,(1;1(1)3) = L,(1;1, 2, 3) and

1 0 0 0 0
L(0;0,1) L,(1;0,1) 0 0 0
NO — 0 Li(1;1,2) L(2;1,2) ... 0 0
0 0 0 Li(ryr,r+1) Li(r+1;r,r4+1) ...
1 0 0 0 0
0 1 0 0 0
No | 0 Li0:0,2) Li2;50,2) 0 0
0 0 0 L(r—1;r—1,7r+1) L/(r+1;r—1,7+1)

.........................................................................................................

and the product is clearly

1 0 0 0 0

L,(0;0,1) L(1;0,1) 0 0 0

L® .- N@ND = L,(0;0(1)2) Ly(1;0(1)2) Ly(2;0(1)2) 0 0

moTm e 0 Ly(1;1(1)3) Ly(2; 1(1)3) Ly(3;1(1)3) 0
0 0 Ly(2;2(1)4) Ly(3; 2(1)4) Ly(4;2(1)4)

.............................................................................................

since the result of application to f, consists, apart from the first two elements, of a set of
quadratic (Lagrange) interpolation polynomials at x = X.

5-3.
It seems worth while to exhibit the corresponding matrices for Aitken’s process.
They are

1 Y 0 0
L,(0;0,1) L,(1;0,1) 0 0
NO# — L,(0;0,2) 0 L,(2;0,2) .. 0
n
Lo 0 0 Ly(r5 0,
1 0 0 0
1 0 0
N@* — 0 Li(1;1,2) L(2;1,2) 0
0 Ll(l: 1, 7) 0 Ll(ra 1, 7-)

...........................................................................
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with product

1 0 0 0
L(0;0,1)  L;(1;0,1) 0 0
L% = NO*NO* = | L,(0;0,1,2) Ly(150,1,2) Ly2;0,1,2) ... 0

Ly(0;0,1,7) Ly(1;0,1,7) 0 vee Ly(r;0,1,7)
5:4.
The application of the Neville process for £ columns (k¥ < z) then yields
LPA, , t,+LPrk = LW, (5+41)

The right-hand side consists, as mentioned above, of the first k41 diagonal elements of
the Neville tableau, together with the remainder of the (k4 1)st column; these are the
results of computation on the estimates. The left-hand side gives a vector of expressions
equivalent to the results on the right. Consider the terms of (5-41) in turn. We can write

A, to= (W lA¥ Ot = u, f(X)+ (0|Af, (5:42)
and consider premultiplication by L{. Clearly

LiPu,f(x) =, f()
since this is just interpolation of a constant and yields a vector of identical terms. We have
also seen in § 5-2 that L" A¥, results in a matrix consisting entirely of zeros below the
main diagonal.

We shall now consider the two terms involving (0|A},)t, and r®. These provide a
vector of remainders, each expressed as a series, as mentloned in § 3-4, ending with (or,
when 7 > £, consisting of) a remainder term of the form given in (2-2). For each row we
can replace the series by a single equivalent remainder term of the form in (2-2), the usual
Lagrange remainder term, as remarked in § 3-4. This remainder term, for the rth row,
will contain 7 factors (x—x;) when r < £ and will be denoted by R¥%~D; when r > £ there
are k-1 factors (x—x;) and the term will then be denoted by R*%®. We thus obtain the

I
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remainder Vector  pxw — (RO, R¥D, ..., RI®, ..., R¥®, . R¥®)T (5-43)
]1‘ in which the upper affix in each remainder is one less than the degree of the product-
:é coeflicient of the derivative
s PO, i T <k or fENG )[(k+1)L 7> k

=
R This term is highly ineffective as a remainder for early approximations on the Neville
Eg tableau diagonal, but improves as £ increases, until it can be satisfactorily neglected.
~w Thus finally (5-41) becomes

U, /() +r® — LA, (544)

and only the right-hand side has to be computed, until satisfactory agreement (see § 12)
indicates that the R}® reached are negligible. These remarks, by suitable choice of %,
clearly apply to any approximation in the Neville tableau; intercomparison of items may
be used to give reasonable estimates of the error in most of them, and to suggest which
gives the best result, and how good this result may be. Full discussion of error analysis is
beyond the scope of the present paper, but is carried somewhat further in § 12.
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6. STEPS IN THE ELIMINATION PROCESS

Before suggesting extensions we again list below the precise steps to be taken in thinking
about, and in applying, Neville’s process. We want to make the actual numerical process
as simple and effortless as possible, increasing the work to be done only if necessary to
achieve wider application or higher precision.

I. We first isolate the quantity it is desired to compute, as a single term in each equation.
This corresponds to the detachment of u,f(X) from A, . t, leaving (0]A},)t,.

II. We next apply a premultiplying matrix L® so that L{"(0|A¥ ) is reduced to zeros
on and below the main diagonal.

III. The terms L¥(0|A%,) t,+LPrP are then combined into a single vector rj® of
error terms, in a tidying up process. The sole use made of these terms is to search for
negligible ones.

IV. The only numerical work to be done is to evaluate L f,, to obtain estimates of the
result. This depends on the fact that L¥u, = u,.

V. We are particularly anxious to choose a method for developing L{® in its application
to f, that is easy to apply. This is exactly why the Neville process is so attractive; it works
only on a matrix A%, in which each row is formed of powers &, r = 1(1)k, i.e. §,E7,E, ...;
all must be assumed present, starting from the first. Any values {; may be used.

We discuss in §§ 8, 9, 10 ways in which these steps may be usefully varied.

7. ROMBERG INTEGRATION

Romberg (1955) introduced a method of integration making use of the trapezoidal rule,
with successive halving of the interval. Successive results are then used (as in Richardson’s
‘Deferred Approach to the Limit’) to eliminate in turn errors of the form ah?, fh*, yiS, ...,
which normally occur when the function is ‘well-behaved’, and % not ‘too large’. Neville’s
process does, in fact, apply in this case, and can be used with exactly the same multipliers
in every step in each column, though differing from column to column. The formula is,

1y T BRIy )
22 Flo3h2, ..., k2jex)| ~ M T g
__ 22 f(oa hzzn LR i2+j——l)

Lo f(05 -y ees ;liz+_;')

which corresponds to the elimination of 4%/,

This method thus restricts values of £ to be in geometrical progression. A result of this,
used by Fox (1967), is that the powers eliminated need not be in geometrical progression, as they
must be for Neville’s process to apply; nor need they start with the first power—they can
be quite arbitrary, and can be eliminated in arbitrary order.

In fact, if the error is of the form a4/ +a,hf24-... we eliminate «;/4% by evaluating

20 f(0; hE, ...y B y)
. B2 }2 2 o RAT ] s +E—-1
f(O: h’z’: hz’+1: LR /Zz‘-i-k) o 1 f(O, ]l%+1, cees hiz+k)

in fact 9 9
2 227

= (2%27-1)

(26 —1)

and so on. It is, however, essential that A,,; = A%, with the same A for all 7 (here A = 2),
so that the column vector 4 has all altered elements multiplied by the same constant.
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We can thus include a Romberg process in our battery of methods for elimination of errors.
Fox (1967) gives some examples (with a slightly less systematic method of use). We note
that the Romberg process involves an amount of work comparable with Neville’s process
in similar circumstances.

8. EXTENSIONS OF THE PROCESSES

8:1. Premultiplication by a diagonal matrix

The error expansion in powers of £ sometimes involves odd powers only, or powers in
arithmetic progression with indices other than the complete series of positive integers. We
may be able to convert the matrix A¥, into standard form (and so avoid having to
eliminate ‘vacant’ columns corresponding to absent terms) by premultiplication by a
diagonal matrix.

For example

3 5 2 4 6
X0 X0 Xo X0 Yo %o

3 5 2 4 6

XXy X o} XD XA

D(xoa Xy oeny xn) 3 5 - 2 4 6
Xo Xy X5 . X5 Xy X3

....................................

the last matrix being in standard form for Neville’s process with variable x2 Here
D(xy, %, ..., x,) represents a diagonal matrix with diagonal as indicated; more briefly it
will be written as D = D(x), with x = (x,, %y, ..., x,)7 = («,) as diagonal.

Equation (5-41) is then replaced by

LEDA, t,+LPDr®» = LWDE, (8:1)
where L{P is the appropriate matrix for variable x2. Equation (5-44) then becomes
Lo, f(X)+1P = LiP Df, (8-2)

in which v, = Du, and ¥ is still neglected (except perhaps for study concerning which
approximations give it small values). We now have to compute Df, (a simple matter)
before applying LP, and and we must also compute L¥P v, ; this is an extra evaluation of a
complete Neville tableau. The approximations to f(X) are now given by ratios of corre-
sponding terms in L{® Df, and L{¥v,. The amount of work is thus approximately doubled,
but with the gain of superior convergence in many cases, and of application to cases not
otherwise accessible to Neville’s process.

Other diagonal matrices of use are D (A%, A;'%, k52, ...) which reduces the Simpson rule
error ah*-+bh8 +ch®+- ... to standard form; D (x5!, x;7!, x5}, ...) which reduces the x, column
(cofactor of f*(X)) to u,, see § 10-5, later; D (A3, A}, /3, ...) which reduces to standard form

1
the error term for the Trapezoidal rule applied to f J{x(1—x)} dx.
0

8-2. Replacement of the unit vector

We have seen in § 8:1 that premultiplication by D to render A}, more amenable to
Neville’s process replaces u, by Du, = v,, which is no longer a unit vector, and must be
processed. In fact, a non-unit vector v, may arise in other ways.
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An example occurs in the summation of series of terms of alternating sign. If we require
S = Z (—*lyar
0

we may find that §, is expressible in the form
S, =8+ (—1)7R,
in which R, = §: a;r.
. =1
If we now write
(—1)VS+9‘7—1+%2+...: (—1)S, (r=0,1,2,...)

we have the matrix equation, involving several partial sums S,,
VnS—{ﬁ (OlAzk) dk+r$lk) =8,

= <S(), _Sl’ Sz, _S3, ...)7'
dk == <S, Otl, az, ey O(k>T

and v, = (1, —1,1, —1, ..)7

with 7+ 1 elements, or more generally, with r = ngy, n;, n,, ...

Vo = (1) (=1)m, (=1)™, )" = ((—1)™)
and 8, = ((—1)®8,, (—1)mS,, .7 = ((—1)mS,).

As in § 8-1, reduction involves using the Neville process on both s, and v,; this can be
successfully and readily done. We may also combine the processes of §§ 81 and 8-2, as in
the example of § 10-3, with negligible extra work.

In the tables in § 11 below we shall drop the suffix » and use u for the vector (1,1, 1, ...)7
also denoted by (1), assuming the appropriate number of elements. Similarlyt, for argu-
ments %, = 1/n,, we use v for the vector ((—1)™), v® for (n,), v® for (1/n,); these are the
only ones for which results are tabulated, except in discussion of rounding-error, where
v = (1, —1, 1, —1, ...)T, with strict alternation, is used.

where S

9. INITIAL ISOLATION OF TWO TERMS
9:1. Derwatives

In § 5-4, we detached from A, . t, the initial column u, f(X). We could also detach the

second column, writing
Akt = (u W ATD t,
=, f(X) +wW.lf (X) + (0[0[ATR) t,
in which wi = (&, &, &5, &5 ...)T, withs = 1.
For the application of Neville’s process we must also restore A¥* to standard form by
premultiplication by D(£;1, 51, ...) = D(w{ V). Equation (5-41) thus becomes
LPw, 1 f(X) +u, f(X) H{LP(0[0] A 1) 6+ LiPDriP} = LIPDA,

1 Note that a single symbol for a vector always stands for a column vector unless 7 is affixed. Thus the column
vector with typical element u, is written (u,) so that

(u)T = (uy, thy ...y u,) or () = (uy, thgy ...y ,)7.
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since DA} = A}y, DWY =u, Du,=w".

The remainder (comprising the terms in { }), as usual, will be treated as negligible, with
careful examination to decide how far this is so. We now pick out #wo accurate equations,
for terms where both errors are judged quite negligible, and solve these simultaneously for
f(X) and f'(X). In this way a derivative may be calculated and, by use of other equations
or pairs, checked.

It is clear that this method is capable of extension to higher derivatives.

9-2. Removal of a “rogue’ error term
The same principle may be applied if the error of the initial estimates consists of a
standard series of powers with an extra term, for example, if

R(E) = af+bE+c8+ ... +ap(£).
In place of (5-13) we then have

(BENAL L) @t)T+rP = 1,
whence, in place of (5-44)

aLP(B(E,) +u,f(X)+r7® = LiPL,.
As before, r¥® is neglected, and we use fwo good estimates to determine (or eliminate)

« and so find f(X).
10. FURTHER APPLICATIONS AND EXAMPLES

f“’ dx

I

the error in 7, is, as h—>oo, of form ah-+ph¥+yh5+.... We therefore multiply by
D(1, 4, %, % & %) and eliminate ah?+ fh*4-yhS -+ The vectors v® = (1, £, 4, 1, & D7
and Df, = (73, §1}, ¥T3, 173}, §13, 373)" are listed one below the other, and Neville’s

process applied successively to the pairs. We work to eight decimals (to allow some accu-
mulation of rounding error), and retain rational form when working on v®. Ratios are

10-1. Quadrature (ii)
In the example of § 4-4, namely

given to seven decimals.

TABLE 10°1
n  h? hT,
h
1 1 22
1 1-03367 120
9 3 132525340 ¢ 0-57557 789
3 0-62647 715 80 0-37643 726
3 1 093704437 © 0-38888 355 1260 025082 894
3 044828195 105 0-25431 806 8300 0-17626 928
4 4 072321081 7 026926 978 210 017743 427 1968050
i 031402 282 35 018223 951 34050
6 +5 049588 415 iv 019447814 1155
8 0-22436 431  *10
8 A 037709422 T4
8

67 v Vor. 263. A,
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TABLE 101 (cont.)

Ratios
22 3-10101 36
2-65050 68 3-13951 58
3.13238 58 3.14113 21
2.81113 31 3.14098 25 3.14159 51 B
31379736 ° 31415760 51415 3-14159 30
289284 32 3.14148 08 3.14159 30
3-14022 82 3.14159 16
20753049 59082 314157 00
3-01675 38

Comment on table 10-1

The improvement in the result over that of § 4-4 is noticeable. Using n = 1, 2, 4, 5, 10, 20
gives 3:14159 2665, with 10-figure working.

10-2.
For the integral

1
[ = f Jx(1—x)} dx = L7 = 0-39269 90817,
0
Fox (1967) has shown that the trapezoidal rule gives an error of form ah? -+t - yht .. ..

We shall therefore reduce trapezoidal sums 7}, by using Neville’s process on 7}/,/h and on
1/J/h with variable .

s ;_‘_‘m[»-a Bl O e 3

!
<

O R 1o

L A

/A
I §
o
!
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TABLE 10:2
Tulh
0
0-35355 33906 07071067812 4y 196 64039

0-68301 27019
0-79594 89224
1-:20049 89581
1-73547 85037

1/h
1

1-41421 35624
2

2-23606 79775
3-16227 76602
4-47213 59550

0

0-25

0-34150 63509
0-35595 91794
0-37963 11036
0-38806 47908

1-01247 20132
1-24769 38044
1-60504 89938
2-27045 80493

1-82842 71248
2-58578 64376
3-18033 98875
4-08848 73429
578199 42498

0-38672 95402
0-39155 28361
0-39231 46106
0-39257 77089
0-39267 73274

1-40450 83319
1-84328 57867
2-49226 10678

2-83823 95419
3:57670 88541
4-69391 89798
6-34649 65521

Ratios

0-39258 85773
0-39268 17611
0-39269 65494
0-39269 87193

1-47707 03089
1-95298 01502
2-65450 48881

3-76132 61822
4-97322 15112
6-75964 09452

0-39269 93399
0-39269 92084
0-39269 90959

2-00585 90217
2-73245 20812

5-10787 65478
6-95813 19934

0-39269 91974
0-39269 90870

2-77069 38212

7-05551 38590

0-39269 90828

PHILOSOPHICAL
TRANSACTIONS
OF

Comment on table 10-2

Nearly eight correct decimals have been achieved with 21 points, and results are still
improving.

This example, where no integer powers of & appear in the error expansion, suggests
strongly that the form of error to be eliminated depends mainly, if not entirely, on the ends
of the range.
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10-3. Summation of series (ii)
As another example in which the vector u,, multiplying the desired end-product, is
replaced by a more general vector v,, consider the series

S = :? (= 1)1/,

For comparison, we note that § = In2 = 0-69314 71806. Here we take

§ =S (1Y (—1)=Y2n R, = S, R,

1
where it can be shown that

(—1R, = 2 By g = Ry

in which E, is supposed to die out very rapidly indeed, and to be negligible except perhaps

for a very few small values of n. We write the relation in the form
(=1)"8, = (=1)"S—RT

and eliminate R}, using n = ng, n, f,y, ..., so that v, = ((—1)™, (—1)m,

exhibited in table 10-3, in which 1/x2 is used as elimination variable.

...)T. Results are

PHILOSOPHICAL
TRANSACTIONS

XTI W 3

0-69441 94693

0-69314 72134

TABLE 10-3
(—1)S,
—05 +1-16666 66667
+0-75 i —21708333334 | aoei a0
—0-66666 66667 | o 47619 gg76e T30L58T3016 g onyyqa109 8 TISE80234L g 0500 04883
+0-70833 33333 ~ 6-32630 62170 + 17-57419 96349
— 3-15740 74074 + 1470212 45187 — 37-52978 52271
~0-68333 33333 +9-44501 68347 — 33-03150 07489
+3-84393 93938 2426410 01895 +73-22589 76216
+0-7 —13-25704 15693 + 58-28345 09768
— 4-53205 12821 + 37-64656 31857 — 50-97193 83773
~0-68809 52381 +17-76234 25783 — 33-49107 60805
+ 522174 60318 ~ 15-70666 62637 +18-11062 74423
+0-69702 38095 — 3-65782 30802 +9-15199 83585
0-69316 57847 +2-03733 22029 — 2-12646 98782
0-69563 49206 +0-69314 74191 —0-05491 44878*
e s 06931550816 T 00N TAO T 0-60314 71849 008N 28T 087022 45810
0-69315 15064 069314 71826

— 38:69348 30545
+80-60960 98120
—63-25524 08392
+26-74594 81697
—5-08510 98373
+1-36059 27663

Y B \

0-69412 18503 0-69314 96282

SHRNOXTISSHA WD~ I

THE ROYAL A
SOCIETY 3

PHILOSOPHICAL
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0-69314 96282

0-69314 72134

(="
—1 + 5
+1 e —31333333333 o oo
-1 425 502857 14286 e irunt 1200382 TI005 g 44100 4047
+1 & —9-12698 41269 +25-35420 87543 — 5582289 62808
—a +21-21067 82105 — 5414403 52245
A Y +13-62626 26261 T 212000 8% % _ 47.65438 26545 |04 LS SR04 116:20508 43104
+1 i — 1912587 41259 +84:08524 56216 — 9125802 22696
¥ 1 +54:31250 97143 — 7353696 27256
o1 i +2562564 10261 + % —48:31740 93897 ‘ +38-58624 67877
+ils — 2965092 96137 T 15 +2612811 23973
+1 ] — 52171241830 ~Fp00 IRE 1820850 26427 T2 TS r.33626 27443
! ! +1 h —00ToR248s05% TG S 19620204340
! 1 ] 1
1
1
Ratios
o 0-6931...
0-6923076923  ("goily B0l 634304 463713
0-69333 33333 60314 31160 4 60162 472327 472209 471785
0-6930894309 0031800 473088 i 471781 411788
0-69316 93989 0-69314 69632 471609 471811 471807 471806
0-6931372549 (0051 D008 471844 e 471805 41800
0-6931521281 00031 TaA) 471779 o 471806 471806
0-69316 57847 "a0817 n er 471845 471781% 471806 471815
0-69315 55816 0 oo 4 THY 471849 s 471818
0-69315 15064 471826

67-2
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Comments on table 10-3

This rather lengthy example exhibits several points.

(i) We can select the sums S, to be included in the table. Here we have chosen
n = 1(1)8(2)16; this gives v, with units of alternating sign up to the eighth term, with a
tail consisting of units as in u,. This allows comparison to some extent of results using
either v, or u,.

(ii) The part with alternating signs involves extra work, noticeable with desk machines,
less so with an automatic computer.

(iii) Accuracy is better where signs alternate because of the larger divisors used in
obtaining §; the rounding-error effects depend on the basic Neville steps, and not on what
happens to u, or v,. These errors are noticeable in the lower lines to the right of the table.
See also § 12-4.

(iv) The possible presence of small divisors is well exhibited in items marked with an
asterisk *. The increased rounding-error is apparent, but ephemeral; it does not affect
later columns.

(v) Rounding-error effects increase towards the bottom of the table and tend to persist
in upward sloping diagonals; not unexpectedly. Comparison of results in the same
vertical column provides the most useful information on rounding errors. See also § 12-7
later. Values were computed on the Cambridge Titan with nearly 11-figure accuracy.

10-4. Ewvaluation of a limit

As an example of the type involving two unknowns, we shall not obtain an actual
derivative, but use the example of § 10-2 to obtain the value of o. In other words, we shall

evaluate s (1 3
—o = lim k-t U Je(1—x)) dx—Th} — lim (I—T))/R}
0 h—0

A0
in which T is the trapezoidal estimate to the integral

n—1
T, =S Jirh(1—mh)} (nh = 1).
r=1
To obtain this we write It ad-ph-t+yh2+... = T,[h*
giVil’lg an+una+A;2k,k—l(ﬁa 7 3) )T = (Thlh'l_%a T;zZ/lE%J )T
with v, = (% kst )T

We thus have to apply the Neville process to v, and (7}, ;). Ifin the Neville tableaux we
denote the sth elements in the rth columns (r = 0(1)£—1) by a, , and b, ; respectively,
we then proceed as follows. From two consecutive elements in any column we have

ar,sl_'_oC = br,s
ay, S+1‘I+O‘ = br,s-l-l
b —b
whence J — s+l ns
Q541 Gy, 5

&= br,s*—dr,sl
with br,s+l = 06-{-(1,,’“_1]

as a check in hand calculation. Results are in table 10-4.
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; TaBLE 10-4
ko Tk
1o 1-41421 35624
1 . .
3 01071067812 4 pieng agsag 58712562579 4 55660 63022
b 27320608076 ¢ 07051 gg206 1177953 64933 4] 5ogas ngg7g 33-BLB1OT0195 g 0907 34417
} 39797446120 00100 9290 9740337 76060 3130933 TS 5505837 06206
1 12:00498 95810 20 (30T 45500 50.87545 50060
25 3470957 00740 5
1/n%
1! 4-65685 42496
1 28284271248 46568 16:00981 24171
18 131715728752 5, 5511 71457 348164433278 g5.69590 88061
2390169 94375 80-78733 22583 297-00548 59849
L 1118033 98875 259010092310 70.84088 99358 0078105 2208 91994097 21260
+iy 31162277 66020 |52 00521 33160 175.00514 43585
5 89-44271 91000
Values of I and «
0-38672 95402
—0-3867205403  a005s g5mm3
0-39155 28361 — 4140142223 .39969 93399
—0-40037 18812 50068 17611 — 04157875100 (20060 01076
0-39231 46106 — 04162415995 (59969 g0g4 —O4157828656 39969 90898
—0-40646 60769 0060 cxg0q —O-4IBTBBZ5Z (oo oo —0-41577 26958
0-39257 77089 — 04165950653 59969 gog59 — 041577 36225
—0-40940 76055 ) 0060 enygg —0-41577 54518
0-39267 73274 — 41670 80374
—0-41255 78213

Comments on table 10-4

The values of [ agree with those in § 10-2; this is to be expected, since they result from
elimination between the same sets of values though the terms eliminated are removed in
a different order and agreement is rather better than might have been expected. For 7, as
seen in § 10-2, the final estimate is the best, with error about 1079, The final value is also
best for «; using the known value 7 for I and subtracting this from 7}, we can then divide
T, —%m by /* and use the results in an ordinary Neville reduction ; by using nine values of 4,
(I, 3,3, 51, 3, &, i %) the best estimate obtained is @ = 0-41577 2448+. An estimate
may also be obtained from approximations given in Fox (196%7), but it seems difficult to
obtain great precision in this way. '

The single elements in the final columns are not needed ; they are simply recombinations
of the two in the previous column. In other words, the pairs (q,, 8, ;) and (a, ;.1,0, ;1)
give results identical with those from (a, ., b, ,.1) and (@, b,p1,4)-

It may be possible to reduce rounding-error—at the expense of increased truncation
error—by taking the bottom element in a column and combining it, not with the element
next above it, but with another higher in the same column. This needs investigating.

10:5. Derivatives

A first derivative is obtained in a manner precisely similar to the process in the previous
§ 10-4. The only difference is that v, is now (1/,, 1/£,, 1/&;, ...)T and the final vector is
(fi/&,). It does not seem necessary to give an example.


http://rsta.royalsocietypublishing.org/

/|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

546 J. C. P. MILLER

We may, however, remark that rounding errors are known to cause difficulty with
derivatives, and it seems likely that separation of the final elements used and judicious
choice of the §; will help.

10-6. Integration (iii)
A final example in which the Romberg process is most effective is now given.
The mid-point rule approximations to the integral

JO -8 coshx

have a series of correction terms of the form exhlblted,

M, = I+-ok* -+ Bh% -+ yhE -8k +ehs + ...
the half-integer powers coming from the lower limit and the even integer powers from the
upper limit of integration. We use £ = 0-8, 0-4, 0-2, 0-1, 0-05, and 0-025 and, to eliminate
he for p =%, 2, %, 4, ... in turn from elements AM{ in column r (where r = 0 gives M)

we use » -
pgen _ 2MG— M.
2r—1

The results are exhibited in table 10-6. The hyperbolic cosines were computed to 9
decimals; the value of the integral is 1-90678 3801 to this accuracy.

TABLE 106
M,

0-8  1:36746 04048
0-4 1-52454 70496
0-2 1-63630 76698
0, L L

1-90678 50162
0-025 1-81114 02196

20 2 4 4.2 16 16,2

1-90378 77578
1-90612 16748
1-90668 48701

1-90689 96471
1-90687 26019
1-90680 58596
1-90678 81509

1-90686 67943
1-90679 15276
1-90678 43482

1-90678 65098

1-90678 38696 1-90678 37475

Comment on table 10-6

Convergence is rapid, though a little erratic, indicating the presence of the now familiar
truncation error, noticeable for large %4, not representable by a power series of the type
chosen.t The last result is correct to nearly 7 decimals.

With Romberg integration it needs as many integrand evaluations as have already been
made to add another estimate. With Neville’s process, one would have to eliminate all
powers of /* to the desired limit. Eventually this would be possible with fewer integrands
than for the Romberg process, but only for a fairly large number of points.

11. LAGRANGE MULTIPLIERS
11-1.

It is possible to obtain individual results in the general elimination tableau by means of
Lagrange multipliers or weights applied to the first column, as we have seen in § 5-2 for
interpolation. These weights may be conveniently obtained by use of Neville’s process

1 If enough is known about this error, it might be possible to treat it as a ‘rogue’, as indicated in § 9-2.
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itself, applied to a set of initial vectors each consisting of zeros except for a single unit in
each position in turn, i.e. we write U = u,+u,; +... +u, in which u, = (0,0, ...,0,1,0,...0)”
with a 1 in the (r+ 1)th position and zeros elsewhere.

Each vector gives a triangular tableau, and results are obtained by taking one element
from each tableau (all in corresponding positions) and multiplying by the appropriate
value in the vector f of initial estimates, and then taking the sum.

It is convenient to collect into a single matrix the vectors of multipliers by which the
vector f of initial estimates must be multiplied to give all the results in the Neville tableau
as a single vector. For convenience, we take the transpose f7, a row vector of initial
estimates, and postmultiply by a matrix of columns, which we shall denote by L7, com-
prising all columns of multipliers—excepting any that consists of a column of a unit
matrix, or that is just a copy of a previous column—of the partitioned matrix
(LPTILPTILPT|...). We go a little further than this in order to produce rational coeffici-
ents, by using integer numerators and a common denominator for each column in L7;
if the row vector of denominators is denoted by d” = (d,,)”, then the matrix of
numerators is given by L’D(d) = (D(d) L)7, which is tabulated, together with d?, and
certain other vectors useful for error analysis. Thus results are given as a row vector by

£7(D(d) L) D-(d),
or as a column vector by D-i(d) (D{d)Lf)
and we note that DLu = Du = d.

We observe also that the final vector of results contains none of the initial estimates (these
can be appended at the start, if desired), and no repetition of estimates.

The matrix L7 thus consists of rows (transposed to columns) taken from the matrices
L described in § 5-2, but omitting in the tables the unit matrix L’ which would give the
first column f of initial estimates in the Neville tableau, and any repetitions. The tables are
partitioned to indicate the separation of successive columns in the final Neville tableau;
there are also extra columns in one or two cases, to allow for estimates, not appearing in
the tableau, that may be useful on occasion, or which might appear in a smaller tableau
by omitting some intermediate argument, e.g. with tables 11-3, 11-4, where 2 = (1, &, %, 1,
£, %, 4%, 3%), the result based on £ = (1, , 4, +) would not appear in the Neville tableau,
nor would the corresponding multipliers appear in the tables unless specially added. The
result for £ = (4, %, 1, &, i) also fails to appear in the tableau, but the multipliers are the
same as for & = (4, %, 1, 1%, 5%) in which each /4 is halved; these multipliers do appear
in the tables.

11-2.

triangular tableaux.

r u, hoou h n, h  uy
1 1 1 0 1 0 1 0
O S S S S A ST L D T T RE S  S
T e R T T R T U I B O A
FORY s O e 0 6 1
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These are combined to give the matrix (DL)7; in the illustrative table below the initial
unit matrix is not omitted, v is the vector ((—1)™), v@®is (n,), i.e. (1, 2, 5, 10).

h
1 1 0 0 0]-1 0 0] 3 o0 |-1
N 0 1 0 0| 2-2 0 |-16 1 | 12

2
(DL)T 1 & 0 0 1 0|0 5—1 | 2510 |—75
& O 0 0 1|0 0 2| 0 15 |100
(DLu)” = d7 1 1 1 1|1 3 1| 12 6| 36
(DLVOYT — (@0%yr |1 1 —1 1 | 38 —7 3 |—44 26 | 188
(DLv@)7 = (d@¥)7 | 1 2 5 10 | 3 21 15 | 96 102 | 648
(D) 1 1 1 1|3 7 3| 44 26 |188
(Do) 1 1 1 1 |22 54 22| 30 18 | 126

The last two lines give respectively the sums of the absolute values, and the square root
of the sum of squares of the elements of each column of (DL)?, for use in determining
maximum and least-square rounding errors. We note that (De) = (d, (¢, ) = (4, ]e|,s)
where € = (Lv®) in which v = (1, —1, 1, —1) with alternating signs; in this table
v = —v{), In general, if (Lv®") = d®, we write (DLv®) = (Dd®) = d"*%; D = D(d)
always.

11-3.

There are six tables of coefficients, tables 11-1 to 11-6, covering three typical sets of
arguments %, for the elmination of powers of 4, and of powers of 4% They are given in
order to help in the evaluation and checking of individual eliminations, and also in order
to help with the discussion of rounding-errors, see § 12-4.

The tables are all concerned with extrapolation to zero for the variable 4. Tables of
ordinary Lagrange interpolation coeflicients may be used in a similar way, but are too
familiar to need inclusion here. The table in Lyness & McHugh (1963) gives the first
column in each block of table 11-2, and is extended to n = 10; this paper and table gave
the initial impulse for the investigation given in the present work—the usefulness of
including the crudest estimate was doubted, a way was sought to avoid its use (Neville’s
process provided the means) and, to the writer’s surprise, the usefulness of the crude
estimate largely confirmed.

In all tables

u=(1,1,1,..)"= (1)

VO = (), (1) )T = (1)), B, = 1n,
v = (ny, ny, ...)7" = (n,)
v® = (1/ng, 1/ny, ...)7 = (1/n,)
v = (1, —1,1, —1, ...)T = ((—1)7), strictly alternating
DLu =d, Lv® =d®, DLV" =Dd" = d"* (r=1,2,3)
Lvd = e, DLV® =De, e = (¢,,) = (|le.,])-
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TaBLE 111
h = 1/n,n = 1(1)8. Powers of & eliminated.
n .
1| -1 . . +1 . -1 . .
2| +2 -2 . -8 +2 . +24 -8 . .
3 . +3 -3 +9 -9 49 . —81 +81 -9 . .
DL)? 4 +4 —4 . +8 —-32 48 . +64 —192 +64 —64 .
(PL)* {5 .45 —5 . . 425 —25 +25 . . 4125 —125 +375 —125
6 +6 —6 . . +18 —-72 418 +72 —648 +648
7 +7 =1 . +49 —49 . +343 —1029
8 +8 +32 +512
a7 1 1 1 1 1 1 2 1 2 1 2 6 6 2 6 6
(d®*)7 +3 —5 +7 —9 +11 —13 415 | —18 +19 —66 +51—146 +99 | +170 —406 +270—1430 + 2314
(d@*)T 3 5 7 9 11 13 15 12 9 24 15 36 21 60 84 36 132 156
e’ 3 5 7 9 11 13 15 9 19 33 51 173 99 28 68 135 240 390
c” 22 36 50 64 78 92 11 60 12 21 32 45 61 18 40 79 140 220
n
1 +1 . -1 . +1 . -1
2 — 64 +4 . +160 —-32 . — 384 +32 + 896
3 + 486 —81 + 81 . —2430 +1215 — 243 + 10935 —2187 — 45927
(DL)” 4 —1024 +384 —1024 + 64 +10240 —10240 +5120 — 81920 + 30720 +5 73440
5 +625 —625 +3750 —625 —15625 +31250 —31250 +2 34375 —1 56250 — 27 34375
6 . +324 —5184 +1944 +7776 —38880 + 77760 —279936 + 3 49920 + 58 78656
7 . +2401 —2401 . +16807 —84035 +117649 —~3 52947 — 57 64801
8 . +1024 . +32768 . +131072 +20 97152
dr 24 6 24 6 120 120 120 720 360 5040
dw*)? —2200 41418 —12440 +6058 +36232 —98424 + 231176 +17 25200 +10 23128 | +170 95248
(d@*)7 360 120 600 180 2520 3240 3960 20160 12600 1 81440
e’ 92 240 520 1010 300 820 1930 1010 2800 3400
o’ 54 134 290 550 170 450 1030 550 1500 1800
Vor. 263. A.
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TABLE 11-2
h = 1/n,n = 1(1)8. Powers of h? eliminated.
n
1 -1 . . . . . . +5 .
2 +4 —4 . —128 +28 .
3 +9 -9 . +243 —243  +729 .
“ (DL)? 4 . +16 —16 . . +320 —4096 +704 .
o 5 +25 —25 . +4375 —3125 +8125 .
< 6 +36 —36 . . +2916 —31104 +4860
o 7 . +49  —49 . +26411 —16807
< 8 +64 +13312
e ar 3 5 7 9 11 13 15 120 105 1008 495 3432 1365
OH (d#y7 +5 —13 +25 —41 +61 —85 +113 —376 +591 —9200 +6745 —65640 34979
=) (d@*)7 7 19 37 61 91 127 169 478 607 7678 4687 38878 18007
— (d®*)T 1 1 1 1 1 1 1 22 13 94 37 214 73
= O e’ 17 26 36 46 55 65 15 31 5-6 91 13-6 19 26
i) o 14 20 26 33 40 47 54 23 38 6-0 88 12 16
=w
o
< (2 n
0
o= 1 -7 . . . . +42 .
5 ST 2 +896 —768 . — 24576 +1056 .
2<O0 3| —6561 +19683 — 13365 . + 531441 —172171 +938228 .
[o}4 (DLyr (4| +8192 —81920 1180224 106496 .| —2097152 +720896 —272 62976 +745472
= < 5 . +78125 —546875 +1015625  —546875 | +1953125 —1953125 +177734375 —13671875
I 6 . +435456 —2519424  + 4199040 +14 69664 —376233984 -+ 680 24448
A= 7 . +1764735 —90 58973 . +242121642 —121060821
8 +57 67168 ' +692 06016
dar 2520 15120 55440 1 54440 3 60360 3 62880 166320 172 97280 32 43240
AT +15656 —180496 -+1175920 —5406280 19572056 | —4606336 +4216912 —824291200 -+ 2727 08632
d@*)7 14870 120458 559162 1888742 5184398 | 2922230 1721542 219882230 489 91582
(d®*)T 302 1322 3802 8702 17222 31238 11014 927014 145750
e’ 6-2 11-9 21 35 54 12-7 25 48 84
o 42 76 13 21 32 80 15 28 48
n
1 —66 . +429 . —715
2 +1 68960 — 146432 . — 46 85824 +146432 + 328 00768
P 3 —9743085  + 25332021 —2302911 + 6839 64567 — 621 78597 — 117517 54833
' (DL)” 4 +92274688 —545259520 -+ 1363 14880 — 139586 43712 + 27262 97600 + 48 85525 29920
~ 5| —244140625 -+3173828125 — 1708984375 +79345703125 —3 05175 78125 — 534 05761 71875
— 6| +181398528 —6348948480 +7255941120 | — 156728328192 + 12 24440 06400 +2115 83243 05920
< 7 +39546 53486 — 118639 60458 +9 6889010407 — 19 37780 20814 — 3323 29305 69601
e E 8 . +64424 50944 . +1030792 15104 + 1759 21860 44416
® | ar 199 58400 2594 59200 2594 59200 62270 20800 38918 88000 65 38371 84000
| @wwr +5277 25952 — 140481 68064 — 274099 54688 | — 3476103 36256 + 45 26074 43072 + 7782 43541 78048
Q| (@@ 207895394 33526 89266 40209 59978 8 07895 66956 6 09826 70382 1027 30598 00268
T O (d®*)7 13 10354 136 13954 112 92602 3250 24572 1670 67678 279711 76092
= €’ 26 54 106 56 116 119
o 16 31 59 32 65 66
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TaBLE 11-3
- h = 1/n, n|24,ie.n =1, 2, 3, 4, 6, 8, 12, 24. Powers of h eliminated.
~
— n
§ S I L e +1 . .
oK 2|42 -2 . . . . .| -8+42 . . . .| 424 -1 . . .| —-60 +5 .
0 3] . 4+3-3 . . . .| 49-943 . . .| -8 +9 -9 . .| +405 —81 +3 .
A= oLyl 4| - - HE-2 L . +8 -8 +2 . .| 464 —16 +40 —1 .| —640 +240 —20 +1 |
=) 6 . +3 -3 . . .. +6 -9 +3 . . 49 —90 +9 —1| +324 —405 +90 —15
T 8| . . . . +4-2 . .. . +8 —8 +1 .. 464 —16 +4 . +256 —128 +40
o 120 . . . . . 43-1| . . . .46 -3 .. . +9 -8 . . +60 —45
= 24| . . . . . o422 . . . . . +3 e S . . 24
<2 |ar 1 1 1 1 1 1 1| 2 1 1 1 1 1 6 1 5 1 1 30 15 5 5
Yo (@) +3 -5 +7 +1 +1 +1 +1 |—-18+19 -5 +1 +1 41| +170 —17 423 +1 +1 | 782 4177 -1 +5
IZ | (@@ 3 5 7 10 14 20 36| 12 9 13 18 26 44 60 15 105 30 50 | 480 345 165 270
su L€ 3 5 7 5 7 5 3| 919 17 19 17 7 28 35 41 35 15 48 66 60 25
BZO0|o” 2:2 36 50 36 50 36 22| 6:0 12 10 12 10 44 18 20 24 20 8 28 36 34 13
8z
T
= n
1 -1 . . +1 . -1 -1 -1
2| 4140 -1 ) —308 +17 4644 +20 +132
3| —1701 +27 -3 46237 —297 — 20493 —45 | —1485
(DL)? 4| +4480 —120 +28 | —24640 +1848 +113344 . +3520
6| —6804 +405 —210 | 474844  —10395 — 573804 +36 | —3564
8| +4096 —512 +448 | —90112  +19712 | +1036288 . .
12 . +216 —420 | +36288  —16632 — 834624 . +1728
24 . +192 . +6912 4331776 .
ar 210 15 35 2310 1155 53130 10 330
(@7 +3614 -39 +41 | —10166 +1749 +94118 | +102 | +3302
(@@*)7 5040 525 1995 83160 68145 31 87800 120 9240
e’ 82 85 37 101 48 55 102 32
o 44 47 19 54 25 28 61 17
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TABLE 115
h = 2-7, r = 0(1)8; Romberg. Powers of & eliminated.
9r
1 1 -1 +1 -1 +1 -1 +1 -1 +1
2 . +2 —6 + 14 —-30 + 62 — 126 + 254 - 510
4 . . +8 — 56 +280 —1240 + 5208 — 21336 + 86360
8 . . . + 64 —960 49920 — 89280 + 7 55904 — 62 17920
DL)r{ 16 . . . . + 1024 —31744 + 6 66624 — 120 94464 +2056 05888
32 . . . . . + 32768 —20 64384 + 873 92256 — 31835 75040
64 . +2097152 — 2663 38304 + 2 26387 55840
128 + 2684 35456 — 6 84510 41280
\256 . 46 87194 76736
a7 1 1 3 21 315 9765 6 15195 781 29765 199230 90075
(a7 1 3 21 315 9765 615195 781 29765 199230 90075 1018 06990 28325
e’ 1 3 5 6-4 7-3 7-8 8:0 81 8:2
o 1 2:2 3-3 4-1 4-5 4-8 4-9 5-0 50
TABLE 116
h = 2-7,r = 0(1)6; Romberg. Powers of 4% eliminated.
or

1 1 -1 +1 -1 +1 -1 +1

2 . +4 —20 + 84 — 340 + 1364 — 5460

(DL)* 4 + 64 — 1344 + 22848 —3 71008 + 59 57952

8 . . + 4096 — 348160 +237 44512 — 15433 93280

16 . . . . +10 48576 — 3575 64416 +9 76150 85568

32 . . . . . + 10737 41824 — 146 56575 89760

64 . . + 439 80465 11104

dar 1 3 45 2835 722925 7395 52275 302 84665 66125

d@*)r 1 7 217 27559 140 82649 2 88271 82503 23612 34518 82073

(d®*)7 1 1 7 217 27559 140 82649 2 88271 82503

€7 1 1-7 19 1-9 2-0 2:0 2-0

o’ 1 1-4 1-5 1-5 1-5 15 1-5

12. ERRORS

Comments on errors have been made on several of the numerical examples and, in fact,
the whole process has been described in terms of error elimination. Some connected
general remarks now seem helpful.

We note that, in general, there are four kinds of error with which we have to deal.

(i) The eliminable error that it is our aim to remove. The form of this error must be
known or assumed. It is usually supposed to consist of a power series in some variable—
&, h, 1/n, B}, etc. It may, however, contain more complicated terms, known or unknown.
See, for example, Fox (1967) where terms of type Aln’ or 4*Ink are shown to occur.

(i) The remaining uneliminated error, which includes further terms of the series of
eliminable error, but may also include those functions that cannot be expressed as a power
series, and so cannot be eliminated by Neville’s process. Such extra functions often affect,
for example, approximations to an integral using large interval, 4, or to sums using a very
small number, z, of terms. They often decrease very rapidly as £ or 1/n decreases, and
show up as irregularities in the first few lines of the Neville tableau; they can then be
avoided by use of sufficiently small % or 1/r, but it must be noted that a major consideration



http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

554 J. C. P. MILLER

is to extract all possible information from all estimates, particularly those that are easiest
to obtain. We elaborate this discussion below in § 12-3.

(iii) Rounding-errors. These can affect end-figures quite severely, and merit study. This
effect is seen in several of the examples, and is discussed below, where it will be seen that
the Neville process itself provides a satisfactory method of study.

(iv) Blunders; to be found and eradicated.

We consider these types of error in turn.

12-1. Eliminable error

This is, as stated, normally supposed to be a power series in some convenient variable.
We shall not discuss here exactly how this is to be determined; Fox (196%) gives a number
of suggestions for quadrature, and experience has also to be called into play. Again,
considerable further study is needed in order to determine from the Neville reduction tableau
uself, whether an alternative reduction variable or method might not be more effective.

We repeat here the Neville’s process results in the elimination of a power series in a single
variable, term by term, using all integer powers starting from the first. A zero coefficient
is no help! Arguments may be arbitrary.

Romberg’s process, on the other hand, removes an arbitrary set of powers, but requires
arguments in geometric progression.

Finally, we mention that straightforward #riangularization of the matrix of eliminable
terms can also be carried out quite generally, but with great increase in the labour involved,
if this turns out to be the only way.

Progress may be determined fairly simply by careful consideration of agreement and
disagreement of intermediate results, allowing for the effects of rounding-error, discussed
in § 12-4 below.

12-2. The remainder term

This is an expression for the uneliminated part of the error, excluding rounding-error
or blunder, in any item in the tableau.

For an interpolation process, the ordinary Lagrange remainder term (2-2) or the
remainder series in (3-41) are applicable. The former, in particular, gives a neat one term
form for R,(x), provided that corresponding derivatives exist.

For many of the later applications, however, there seems no obvious simple function f (x)
that can be regarded as an interpoland, so that conversion from the series (3-41) to the
one-term form of (2:2) is less obviously possible. Nevertheless, we shall suppose that the
behaviour of R,, as exhibited when the form (2-2) is possible, is also applicable to the error
term in many other cases. This suggests, for instance, that ‘extrapolation to zero’ from
arguments all of one sign will, in general, produce results approaching from one side of the
true value (corresponding to persistence of sign in f®*D(y) for successive arguments of
a set—not invariable, but also not uncommon). It is this remark which suggests that,
when oscillation in sign of the error occurs only for large £ (in an integral) or for small n
(in a sum), this is due to an uneliminable term (i.e. not included in the power series) with
oscillating but rapidly diminishing effect; this can be demonstrated in some cases. The
uneliminable error need not, of course, oscillate in sign.
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We have also seen, in § 8:2, how to deal with an error that alternates in sign, with
numerical value decreasing regularly. To do this we have converted the main error series
into a monotonic form, by weighting the vector of initial elements suitably. The com-
ments of the previous paragraph then apply.

Other cases of regular, though not monotonic, behaviour of R, can occur; if this error
is known well enough it may be possible to eliminate it by a more general and elaborate
reduction of the matrix of error coeflicients. This can be a very laborious and time-
consuming process.

12-3. Uneliminable error and blunders

We have just referred to that part of the error not represented by the power series, and
of unknown form. The main points to remember are that it often exists, that it shows up in
approximations most ‘remote’ from the desired result (i.e. with large % or small #) and
that we need recognize it only in order to avoid relying too much on the corresponding
approximations. The last remark applies to blunders also; these, however, may occur
anywhere in the tableau, and should be removed if they can be suitably disentangled from
other errors for identification.

A specific numerical illustration may be helpful here. For the integral fm T%E used in

§§ 4-4 and 10-1, the estimates 7}, contain errors of which part is expressible as a power
series in (odd) powers of /, and part not expressible in this way. In this case, if we evaluate
the infinite sums for each fixed /4, the part expressible as a power series in 4 is completely
removed for each %, but the more difficult part of the error still remains. In fact, we find

d 1
T, (0) =k > ——
#(0) _zw 1+ n2h?
as given in the table below.
h Th((D) Th(w) -1
2 3-42537 71499 0-28378 44963
1 3-15334 80949 0-01175 54413
3 3-14161 45653 219117
% 3-14159 26945 409
i 3-14159 26536 0
It can, in fact, be shown that
w 1 eZﬂ/h -+ 1

k3 1502 = M ealh

~

so that the error is O(e~?"/*) and diminishes rapidly as 4 — 0, much faster than any power
of h. Thus estimates for large / have limited usefulness though they may nevertheless help
to improve final results, so long as the uneliminable error does not dominate the part that
can still be eliminated.

Thus, if we note any irregularity in the tableau, we treat it as a blunder and attempt to
find and correct it; we may, however, expect a failure to correct the irregularity if it is
on or near the top line of the tableau as set out in the examples.

As a rule it is useful to keep the top line, even if it is only to exhibit the irregularities and
to detect when they cease.
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It is perhaps appropriate to say here that considerable effort has been spent on making
as sure as is reasonably possible that blunders have all been removed from the numerical
examples in this paper. However, since correct rounding is not vital to the demonstration
of the various properties that the examples are intended to exhibit, the final digits have
not been exhaustively checked, and trivial departures from ‘best’ rounding have not
necessarily been ‘corrected’.

12-4. Rounding-errors: derwation of bounds

Rounding-errors have considerable effect on the various results in the Neville tableau,
and a convenient means of study is provided by the Neville-Romberg process itself, applied
to the vectors of a unit matrix. This yields the tables of Lagrange multipliers already con-
sidered in § 11; multipliers in any individual column may then be combined to yield
maximum or mean-square errors as desired.

We shall assume at this stage that each initial estimate ts subject to an independent rounding-
error (see § 12-9 for a discussion of other possibilities) and, for the moment, that each is
subject to the same maximum error ¢, or mean least-square-error ¢; we shall also suppose
that, by use of guard figures, the further rounding-errors made during the Neville reduc-
tion are relatively negligible. The resulting maximum error multiple |e, | of ¢ at any stage
of the Neville reduction is then given by the sum of the magnitudes of the corresponding
Lagrange multipliers, ¢, = > |/, |, where [,  ,(¢=0,1,...) are the multipliers

t

7y 8s

yielding the sth element in the rth column to the right of the original estimates in the
Neville tableau. The vector e’ = (le, )7 is given in the tables of §11. The vector

T T j : 2 Y2
o’ = (0, )7 is also given, where o2 = 3 [2 ..
t

The signed multipliers ¢, ; can be developed collectively by an application of Neville’s
process to a single vector consisting of alternate positive and negative units. To see this,
consider the general Lagrange multiplier for the point (x,, f,) from the set

(%, f,)s 7= 0(1)m.
It is, for the argument x = X]
L(s; 0(1)m) :(X—xo) (X)) (X =2 ) (X —2xg1). (X =x,,) -
(xsﬁxo) (xs“xl) e (xs#xs—l) . (xs—xs+l) e (xs_xm)

Now, this coefficient is symmetric in the arguments so that the order of use in derivation
when the Neville process is applied is not relevant. We shall therefore consider only the
arrangement in which x, < x, when » < s. It is then clear that the sign of L(s; 0(1)m) is
(—1)* when X = 0, all x, > 0, as is the case with the examples of this paper. The signs
thus alternate strictly for s = 0(1)m. This applies to the non-zero elements of every column
in L7 in the tables of § 11. If then, we start with the vector v = (1, —1, 1, —1, ...) with
strictly alternating signs, and apply the Neville process for a set of positive arguments in
ascending (or descending) order, we obtain a tableau of signed elements ¢, ; such that
¢, = |e, | is the maximum possible multiplier of ¢ for the corresponding entry in a Neville
tableau obtained from initial estimates having the same set of arguments, each estimate
subject independently to the same error-bound e.
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It is further evident that the signs of ¢, ; do not depend in any way on the equality in
magnitude of the error bounds of the initial elements, that is, on the sizes of the elements
in v®, but only on the signs; we thus have the result

Maximum error bounds in a Neville tableau for extrapolation to zero® with original estimates
having arguments of one sign arranged in numerical order, and with independent maximum error
bounds, may be obtained by applying theNeville process to the vector of error bounds for the original
estimates used, taken with strictly alternating signs, and taking the magnitudes of the final results.

It is also readily seen that:

If the arguments used are of both signs, still arranged in order (including sign), then the vector to
which the Neville process must be applied to yield error bounds consists of the vector of individual
bounds with signs alternating strictly except that the two bounds for the arguments nearest zero, one
on each side, must have the same sign.

In both these statements we must remember that we have assumed that rounding-errors
made during the Neville reduction are relatively negligible. It is, however, quite easy to
allow for these by increasing the magnitude of each element in the error-bound tableau,
as it is formed, by the amount of the corresponding rounding-error bound for that step in
the reduction. We do not consider this possibility further.

No such simple method has been found to produce the mean square errors o, ,, but it
is clear from the few examples given in the tables of § 11, that ¢, | is normally a moderate
submultiple of ¢, ;, not too difficult to estimate; nowhere in the tables does the ratio
appear to exceed 2.

12-5. Discussion of rounding-errors

Table 11-1 shows that use of £ = 1/n with consecutive values of 7 yields large rounding-
error effects when eliminating powers of %, particularly when 7 is large, and in later
columns in the tableau, the maximum final error is about 3400 times an individual original
error. The arguments of table 11-3 give better results, particularly in the final column
where the error is only 55 times an original error; the maximum is about 100. The
Romberg arrangement of table 11-5 is better again with an error factor of about 8 at most.

For elimination of A2, tables 11-2, 11-4, 11-6 show similar relative error effects, but with
smaller multipliers, respectively about 120, 8 and 2. For error effects with vectors v®, the
elements of (De)” must be divided by the corresponding elements of the vector

(dO*)T = (DLvO)T;

this is readily done and is illustrated by examples below.

12-6.

In table 10-1, the maximum error-multiples in the tableau may be obtained from
table 11-4, or by direct application to v = (1, —1, 1, —1, 1, —1)7 and suppression of
signs. The result is the table of error-multiples on the left below, which apply to the
elements in the reduction of A7}, in the upper tableau of table 10-1. After division by
elements of the v tableau, the error-multiples (to the nearest integer) of the final ratios are
given on the right (including those for 7}, corresponding to equal error maxima in 47},).

69 Vor. 263. A.
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h h
11 5 11
T B S PTYT) P25 11
1 5 197 315 9907 1 3 45 79
3 25 35 208 1575 9195958 3 25 73 150
L 1 7 163 35 15776 1091475 L4 54 145
4 13 35 563 1925 4
1 5 197 77 1 26 126
1 25 WY 6 5y 91
117 18
8 8

The final 3-14159 30 thus may have a maximum error of 150¢ or 8 units in the 7th
decimal, if ¢ = £ x 1078; the truncation error should be small, so that about 6 decimal
accuracy is attained, as indicated. In fact, errors are considerably smaller than maximum
here, even if we disregard extra errors in computing the tableau.

12-7.

In table 10-3, we must compare maximum error multiples given by operation of L on
the vector v® = (1, —1, 1, —1, ...)7 with those given by the denominators (Lv®). The
ratios, omitting signs are

n

11

2 1 i 1 .

3 1 | 1 | 1 .
41 R 1 1 | 1
51 1 1 | 1 | 1
6 1 | 1 | 1 Ly 13
71 | 1, 15 0t
8 1 Loz 2 4 3
01 o 1 G 86
S T T

4 1 12

6 1

This shows the good effect on rounding-error of the alternation of signs in v, when
present, and the deterioration when it is abandoned. The effect of a very small divisor on
error is apparent, and clearly very local. There is also the adverse effect of truncation error
in the final ratios near the top of the table in § 10-3 when 7 is small, but this can occur
independently of the signs in v). Best results are thus obtained on lines, sloping upward
near n =8 or 10, in later columns; obvious convergence and small rounding error.
However, rounding-errors tend to persist in sign and size along such upward-sloping lines;
comparison between successive lines is needed to estimate rounding-error.

12-8.
Finally, we consider the example of §10-4. The tableau for the vector € is given below,
for h = 1/n, 7|20, headed ¢, ,

n €5 n e(l) n (o)
11 1 1
3 1:09 0-4
2 1 35 5 995 2 039 970 146 2 o7 22 1
4 19 17T 9g7 226 sas 939 4 063 112 070 088 g 4 9 65 g5 21
525 — 13 . . . . 17
51 2 11 12 5 0-43 0-22 5 74 12 14
3 9 0-10 0-15 0-8 8
1013 5 10 5190063 10 08 24
20 1 20 20
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Now, from §10-4, we have
I = hfrlwbr,s’ o = br —a, sl — br,sar,s+l*br,s+lar,s

Gy 51178y Q11— s

whence maximum rounding errors are readily found to be

67’ S(I) = E&‘Sj’ﬁ_ﬁtﬂ, €T,s(a) — br’ser’3+1+br,s+l€r,s

Gy 541 Oyys Gy 5417 Gy,
on noting that all quantities occurring, including denominators, are positive in this
particular example (as is quite commonly the case) so that maximum errors in the
numerator subtractions reinforce. The multipliers ¢(Z) and ¢(a) are also tabulated.
It is evident, in this example, that it is not sufficiently extended for rounding-errors to
be significant.

12-9. Error-bounds of original estimates

Errors have been assumed independent, and discussion has been confined to cases where
their bounds are also equal. There are obvious cases where this assumption is unrealistic,
although it can always be attained by use of guard-figures in deriving the estimates and
then rounding them to a lower precision.

In cases where we wish to make the most of our original material we must work with
other assumptions. Cases that come to mind are

(a) Sums. Here S, may have ¢, of order 7 for a single sum and of order »? for a double
sum, while errors in sums are not independent.

(b) Integrals. Subdivisions in the range (g, b) of integration give submultiples of b—a
which means that each pair of trapezoidal estimates share ordinates to a greater or lesser
extent. Errors in estimates are thus not independent. It may, for example, be deduced
from table 11-6, that Romberg integration has a positive multiplier for every ordinate,
whence a maximum error (b—a) ¢ (the maximum for a single ordinate being ¢) for every
result in the tableau.

Double integrals likewise need similar consideration.

(¢) Weighted reduction. If we use a vector v instead of the unit vector u, we modify
the maximum errors in the original estimates, i.e. the first column, of the reduction
tableau; it may well be worthwhile to allow for this in error estimation.

We do not pursue these considerations further, except to remark that we may clearly
replace the initial error vector v® = (1, —1,1, —1,...)7 by the more realistic
(6;, —€qy €3, — €4, ...)T where the €, are maximum errors.

13. CHOIGE OF ARGUMENTS
We are now in a position to recommend the choice of arguments most appropriate for
the solution of various problems of elimination of error, or interpolation.
Points for consideration are
(i) The amount of labour involved in the evaluation of the initial estimates.
(ii) The effects of truncation error.
(iii) The effects of rounding error.
(iv) Extra work involved in the use of non-unit vectors v.
69-2
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13-1. Labour

Of the examples we have considered, the amount of labour in obtaining estimates is
least for sums of series, assuming individual terms relatively easy to obtain; the same
applies to direct interpolation, assuming a table of values already available. Finite
integrals in one variable come next; each new estimate normally involves an increasing
number of extra integrand evaluations (see §13-5). Double sums probably come next,
then double integrals, and infinite integrals in one variable, and so on to higher integrals
and sums.

Precision required may also cause variations in labour involved; we remark here that,
in view of various rounding-error effects, it is useful to keep several guarding figures if
these can be retained at little cost.

13-2. Truncation error

This occasionally makes it unhelpful to use one or more of the crudest estimates available.
This usually shows up clearly in the Neville tableau and can be remedied if necessary by
appending further estimates.

13-3. Rounding errors

We have discussed this in some detail in §12. In general, Romberg arguments give the
smallest errors, with arguments 2 = 1/n with equally spaced values of z giving the largest.
Vectors v with alternating sign have a very good effect on rounding error.

13-4. Non-unit vectors

These involve about the same amount of extra work, per vector, as a full Neville
reduction. The gain in extra or more speedy results is usually pronounced, due to more
rapid elimination of truncation error, or to reduced rounding-error effects.

13-5. Number of points in finite one-dimensional integrals

Romberg integration uses £ = 1, 4, 1, 3, ..., etc., so that use of 271 points (trapezoidal
rule) gives n+1 distinct estimates, with integrands used again in all estimates subsequent
to their first appearance. The use of the estimates proposed by Lyness & McHugh, with
h=1,1%, % 1 ... involves intermittent re-use of most early function values, but fewer new
ones, and gives cruder but easier estimates than the later Romberg ones. In this paper we
suggest use of estimates for £ = 1/d, where either (a) d is chosen to require as few new
function values as possible at each stage, or (b) d is chosen to form a complete set of
divisors of some suitable number N (say 12, 24, 20, 30) with a relatively large number of
such divisors. The characteristics of these choices are intermediate between those of
Romberg (many points for depth of eliminations, small rounding-error) and of Lyness
& McHugh (fewer points, large rounding error) so far as errors are concerned (with
(b) nearer Romberg, (a) nearer Lyness & McHugh); (a) is generally more economical
than either in the number of points required; () is mentioned because of good round-
ing-error, though Lyness & McHugh may need fewer points.

The minimum number of points needed for elimination of depth £—1 in the various
cases are tabulated; this needs £ estimates.
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NEVILLE’S AND ROMBERG’S PROCESSES

NUMBERS OF POINTS NEEDED

number of estimates £ 4
Romberg 9
Lyness & McHugh 7
Miller (a) 7
Miller (b) 7

5

17
11
9

6

33
13
13
13

7 8 9

656 129 257
19 23 29
17 21 25

256 37

10

33
31
49

11

43

37

12
47
43
61

13

59

49

14

65

57

15

73

65

16

81
73

. 121

For the numbers of points (2) there may be more than one possible configuration; we
list a few

— 11 2 3 1 2
k=4 (Oa 4 3y 2y 3 4 1) or (Oa 6 §3 253 E: l)a

k= (Oa 6 4> %a %3 %a %3 %a 1)
k= as for k = 5 with either (% %—J %, %) or (%J %J %a %) or (T:Li? '15—2"3 '17—29 %):
k= as for £ = 5 with two of the extra sets in £ = 6 or with
Tlﬁa %3 %’ %a %a ’1%3 %a Tgﬁ)’
k=8 (0,43, 53,8 %, 8 %—, 2, %, 2, 1) and two of the sets

3
(%: %a %a %)’ (TIOa 1353 10> Tgo“) and (TIE: —1%: TZZ’ %%.T ’
k=9 0,1 and all fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12,
k =10 as for 9, with fractions having denominator either 7 or 9 appended.
A few useful denominators N for the choices (4) are also listed; these always need
N1 points, while the factor 5 may have other features of usefulness with a decimal system.

N k  divisors
12 6 1,2,3,4,6,12
20 6 1,2 4,5, 10, 20
24 8 1,2,8,4,6,8,12,24
30 8 123 56,10, 15,30
36 9 1,23 4,6, 9,12, 18, 36
40 8 1,2 4,5, 8,10, 20, 40
48 10 1,2 3,4,6,8, 12, 16, 24, 48
60 12 1,2, 3, 45,86, 10,12, 15, 20, 30, 60
72 12 1,2,3, 4,6, 8,09, 12, 18, 24, 36, 72
120 16 1,2,3,4,5,6,8, 10, 12, 15, 20, 24, 30, 40, 60, 120
Others are
k=10 N = 80,112,
k=12 N = 84, 90, 96 108, 126, 132, 140,
k=156 N = 144,
k=16 N = 168 210 216,
k=18 N = 180 252 288 300
k=20 N = 240

13-6. Practical suggestions

We may summarize the suggestions made or implied as follows.

Sums of series of positive terms. If the terms are easy to obtain we should use Romberg
estimates, or submultiples of some suitable N. If terms are less easy to get, or if high
precision is possible, we may use all the early estimates of the required result, as in Lyness
& McHugh, but retain several guard figures, if possible. If terms are difficult both in number
and precision we must use early estimates, but it may possibly help a little to get further
reduced values not given in the main tableau, for comparisons, by omitting one or two of
the larger values of n, other than the largest.

Sums of series of terms with alternating sign. Use of successive estimates with errors of
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alternating sign is unambiguously indicated by the example in §10-3, unless extra pre-
cision is very easy, and the results of applying the Neville process to v are unavailable.

Integrals in one variable. Here the number of integrands should be kept down, subject to
the possibility of adequate precision and control of rounding-error, and, to a lesser extent,
the easy availability of certain function values. Possible special sets are indicated in §13-5.

Multiple sums and integrals. We must here make the best possible use of all estimates
obtainable, which suggests the use of n = 1, 2, 3, ... in succession. For double sums we
may use sums over squares |r|, |s| < n, but it is worth while to consider diamonds, with
|7| 4 ]s| < n, as in §4+6, to give estimates for fewer terms with the same £.

For infinite integrals with a maximum at the origin, there is slight danger in using
estimates that alternately use and do not use the function value at the origin, as an error
of alternating signs may be present that is not easily eliminable in this case.

14. FURTHER APPLICATIONS

More applications come fairly readily to mind. Whenever a deferred approach to the
limit is appropriate, so are the methods outlined above. We may mention the solution of
ordinary and partial differential equations in particular—these appear to merit the
thorough study that is still needed, and which it is hoped may be provided later.

The results in this paper have accumulated over several years, and owe a considerable
debt to several students taking the course for the Cambridge Diploma in Computer
Science. I wish to mention in particular, Dr F. Rodriguez, from Brazil, who worked on
the matrix representation and evaluation of derivatives. I am also grateful to Mr M.
Atkinson, Mr S. C. P. Parry and Mr J. Dawson for a thorough checking and study of all

the examples and theory.
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